A considerable amount of research is concerned with the generation of realistic sensor data. LiDAR point clouds are generated by complex simulations or learned generative models. The generated data is usually exploited to enable or improve downstream perception algorithms. Two major questions arise from these procedures: First, how to evaluate the realism of the generated data? Second, does more realistic data also lead to better perception performance? This paper addresses both questions and presents a novel metric to quantify the realism of LiDAR point clouds. Relevant features are learned from real-world and synthetic point clouds by training on a proxy classification task. In a series of experiments, we demonstrate the application of our metric to determine the realism of generated LiDAR data and compare the realism estimation of our metric to the performance of a segmentation model. We confirm that our metric provides an indication for the downstream segmentation performance.
翻译:相当大量的研究涉及产生现实的感官数据。LiDAR点云是复杂的模拟或学习过的基因模型产生的。产生的数据通常被利用来促成或改进下游感知算法。这些程序产生了两个主要问题:第一,如何评价生成的数据的现实性?第二,更现实的数据是否也导致更好的感知性能?本文讨论两个问题,并提出了量化LiDAR点云现实性的新指标;通过关于代理分类任务的培训,从现实世界和合成点云中学习了相关特征。在一系列实验中,我们演示了我们使用指标来确定生成的LIDAR数据的真实性,并将我们衡量标准的现实性估计与分化模型的性能进行比较。我们确认,我们的指标为下游分解性表现提供了一种指标。