This paper provides estimation and inference methods for a conditional average treatment effects (CATE) characterized by a high-dimensional parameter in both homogeneous cross-sectional and unit-heterogeneous dynamic panel data settings. In our leading example, we model CATE by interacting the base treatment variable with explanatory variables. The first step of our procedure is orthogonalization, where we partial out the controls and unit effects from the outcome and the base treatment and take the cross-fitted residuals. This step uses a novel generic cross-fitting method we design for weakly dependent time series and panel data. This method "leaves out the neighbors" when fitting nuisance components, and we theoretically power it by using Strassen's coupling. As a result, we can rely on any modern machine learning method in the first step, provided it learns the residuals well enough. Second, we construct an orthogonal (or residual) learner of CATE -- the Lasso CATE -- that regresses the outcome residual on the vector of interactions of the residualized treatment with explanatory variables. If the complexity of CATE function is simpler than that of the first-stage regression, the orthogonal learner converges faster than the single-stage regression-based learner. Third, we perform simultaneous inference on parameters of the CATE function using debiasing. We also can use ordinary least squares in the last two steps when CATE is low-dimensional. In heterogeneous panel data settings, we model the unobserved unit heterogeneity as a weakly sparse deviation from Mundlak (1978)'s model of correlated unit effects as a linear function of time-invariant covariates and make use of L1-penalization to estimate these models. We demonstrate our methods by estimating price elasticities of groceries based on scanner data. We note that our results are new even for the cross-sectional (i.i.d) case.
翻译:本文为有条件平均处理效果( CATE) 提供了估算和推断方法, 其特征是: 以高维参数为特征的有条件平均处理效果( CATE) 。 在我们的领先例子中, 我们通过将基处理变量与解释变量互动来模拟 CATE 。 我们程序的第一步是正向分解, 我们从结果和基处理中分离出控和单位效应, 并使用交叉配置的残留物。 这个步骤使用一种新型的通用交叉配置方法, 我们为依赖性弱的时间序列和面板数据数据数据。 这个方法“ 离开邻居 ”, 并且我们通过使用Strassen的组合组合数据设置来进行理论化。 因此, 我们可以在第一步依靠任何现代机器学习方法, 只要它能够很好地学习结果和基处理结果的剩余物。 我们的分级( 或余量) 建一个基于 CATE 的基( 我们的Lasso CATE), 将结果残留处理与非解释性变量的矢量的矢量重新复制结果。 如果CATE 的精度功能的精度比正态模型的精度要更简单, 我们的精度 将开始的基的基级变化的基数级变化,, 的计算的精度函数的精度函数的精度功能的精度功能会学的精度, 我们的精度会的精度会的精度会的精度 的精度会的精度会的精度, 的精度会的精度会的精度会的精度会的精度会学的精度会学的精度, 的精度, 的精度, 我们的精度会的精度会的精度会学的精度会的精度会的精度会的精度的精度会的精度会的精度会的精度会的精度会的精度会的精度会的精度, 的精度的精度会的精度, 的精度, 的精度会的精度的精度会的精度会的精度会的精度会的精度 的精度会的精度会的精度会的精度会的精度会的精度, 的精度, 学习的