When estimating causal effects, it is important to assess external validity, i.e., determine how useful a given study is to inform a practical question for a specific target population. One challenge is that the covariate distribution in the population underlying a study may be different from that in the target population. If some covariates are effect modifiers, the average treatment effect (ATE) may not generalize to the target population. To tackle this problem, we propose new methods to generalize or transport the ATE from a source population to a target population, in the case where the source and target populations have different sets of covariates. When the ATE in the target population is identified, we propose new doubly robust estimators and establish their rates of convergence and limiting distributions. Under regularity conditions, the doubly robust estimators provably achieve the efficiency bound and are locally asymptotic minimax optimal. A sensitivity analysis is provided when the identification assumptions fail. Simulation studies show the advantages of the proposed doubly robust estimator over simple plug-in estimators. Importantly, we also provide minimax lower bounds and higher-order estimators of the target functionals. The proposed methods are applied in transporting causal effects of dietary intake on adverse pregnancy outcomes from an observational study to the whole U.S. female population.
翻译:在估计因果关系时,必须评估外部有效性,即确定某项研究对特定目标人口的实际问题有何帮助,确定某项研究对具体目标人口的实际问题有何帮助。一个挑战是,一项研究所根据的人口的共变分布可能与目标人口不同。如果有些共变是效果改变者,平均治疗效果(ATE)可能不会向目标人口普遍推广。为了解决这一问题,我们建议采用新方法,在源人口和目标人口有不同组合数的情况下,从源人口向目标人口推广或运输ATE。在确定目标人口的数据时,我们提出新的双倍有力的估计,并确定其趋同率和限制分布率。在常规条件下,双倍稳健的预测者可能不会达到效率约束,而是在当地对目标人口进行无症状最优化。当确定假设失败时,我们提供敏感度分析。模拟研究显示,在确定目标人口类别时,我们还提出了新的双强估计值的估算值,以确定其趋同率和限制分配率率。在常规条件下,拟议对目标人口进行低度观察的结果。拟议采用的方法是用于妊娠全局性摄入结果。