Existing machine learning methods for causal inference usually estimate quantities expressed via the mean of potential outcomes (e.g., average treatment effect). However, such quantities do not capture the full information about the distribution of potential outcomes. In this work, we estimate the density of potential outcomes after interventions from observational data. For this, we propose a novel, fully-parametric deep learning method called Interventional Normalizing Flows. Specifically, we combine two normalizing flows, namely (i) a teacher flow for estimating nuisance parameters and (ii) a student flow for a parametric estimation of the density of potential outcomes. We further develop a tractable optimization objective based on a one-step bias correction for an efficient and doubly robust estimation of the student flow parameters. As a result our Interventional Normalizing Flows offer a properly normalized density estimator. Across various experiments, we demonstrate that our Interventional Normalizing Flows are expressive and highly effective, and scale well with both sample size and high-dimensional confounding. To the best of our knowledge, our Interventional Normalizing Flows are the first fully-parametric, deep learning method for density estimation of potential outcomes.
翻译:有关因果推断的现有机算学习方法通常通过潜在结果的平均值(如平均处理效应)估计表示的数量。然而,这种数量并不反映潜在结果分布的全部信息。在这项工作中,我们根据观察数据的干预措施估计潜在结果的密度。为此,我们提出一种新型的、完全对称的深层次学习方法,称为干预性标准化流程。具体地说,我们结合了两种正常化流程,即(一) 用于估计骚扰参数的教师流量,和(二) 用于对潜在结果密度进行参数估计的学生流量。我们进一步根据一步步偏差修正,进一步制定了一个可移动优化的目标,以便对学生流动参数进行有效和加倍稳健的估计。因此,我们的干预性正常化流程提供了一种适当的正常密度估计。在各种实验中,我们证明我们的干预性正常化流程是明确和高度有效的,规模与抽样大小和高度混和高度混为一谈。我们最了解的情况是,我们干预性正常流动是用来估计潜在结果密度的第一种完全对准、深入的学习方法。