Many proposals for the identification of causal effects in the presence of unmeasured confounding require an instrumental variable or negative control that satisfies strong, untestable exclusion restrictions. In this paper, we will instead show how one can identify causal effects for a point exposure by using a measured confounder as a 'bespoke instrumental variable'. This strategy requires an external reference population that does not have access to the exposure, and a stability condition on the confounderoutcome association between reference and target populations. Building on recent identification results of Richardson and Tchetgen Tchetgen (2021), we develop the semiparametric efficiency theory for a general bespoke instrumental variable model, and obtain a multiply robust locally efficient estimator of the average treatment effect in the treated. The utility of the estimators is demonstrated in simulation studies and an analysis of the Life Span Study, concerning atomic bomb survivors in Japan.
翻译:在未测到的混乱情况下,许多确定因果关系的建议需要一种工具变量或负控制,这种控制满足了强大的、无法检验的排除限制。在本文中,我们将展示如何通过使用测量的混淆器作为“显性工具变量”来识别点暴露的因果关系。这一战略要求外部参考人群不能接触暴露,并且需要参考人群与目标人群之间的混合结果联系的稳定条件。我们根据Richardson和Tchetgen Tchetgen(2021年)最近的识别结果,为通用的口述工具变量模型开发半对称效率理论,并获得一个对所处理的普通治疗效果的倍增量的当地高效估算器。在模拟研究和对日本原子弹幸存者的“生命空间”研究的分析中,都展示了估计者的效用。