Background: Instrumental variables (IVs) can be used to provide evidence as to whether a treatment X has a causal effect on an outcome Y. Even if the instrument Z satisfies the three core IV assumptions of relevance, independence and the exclusion restriction, further assumptions are required to identify the average causal effect (ACE) of X on Y. Sufficient assumptions for this include: homogeneity in the causal effect of X on Y; homogeneity in the association of Z with X; and no effect modification (NEM). Methods: We describe the NO Simultaneous Heterogeneity (NOSH) assumption, which requires the heterogeneity in the X-Y causal effect to be mean independent of (i.e., uncorrelated with) both Z and heterogeneity in the Z-X association. This happens, for example, if there are no common modifiers of the X-Y effect and the Z-X association, and the X-Y effect is additive linear. We illustrate NOSH using simulations and by re-examining selected published studies. Results: When NOSH holds, the Wald estimand equals the ACE even if both homogeneity assumptions and NEM (which we demonstrate to be special cases of - and therefore stronger than - NOSH) are violated. Conclusions: NOSH is sufficient for identifying the ACE using IVs. Since NOSH is weaker than existing assumptions for ACE identification, doing so may be more plausible than previously anticipated.


翻译:工具变量(IVs)可用于提供证据,证明治疗X是否对结果Y产生因果关系。 即使仪器Z满足了相关性、独立性和排他性限制这三个核心四类核心假设。 即使仪器Z满足了相关性、独立性和排他性限制这三个核心四类假设,还需要进一步的假设,以确定X对Y的平均因果关系(ACE)。 这方面的充分假设包括:X对Y的因果关系的同质性;Z与X的同质性;Z与X的联系没有效果修改(NEM)。方法:我们用模拟和重新解析所选定的特殊研究来说明NOSH(NOSH)的较弱性,这就要求X-Y因果效应的异性效应与(即与Z-X联系的不相干)。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
因果推断,Causal Inference:The Mixtape
专知会员服务
106+阅读 · 2021年8月27日
专知会员服务
51+阅读 · 2020年12月14日
因果关联学习,Causal Relational Learning
专知会员服务
183+阅读 · 2020年4月21日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
因果推断,Causal Inference:The Mixtape
专知会员服务
106+阅读 · 2021年8月27日
专知会员服务
51+阅读 · 2020年12月14日
因果关联学习,Causal Relational Learning
专知会员服务
183+阅读 · 2020年4月21日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员