The combination of cell-free massive multiple-input multiple-output (CF-mMIMO) and reconfigurable intelligent surface (RIS) is envisioned as a promising paradigm to improve network capacity and enhance coverage capability. However, to reap full benefits of RIS-aided CF-mMIMO, the main challenge is to efficiently design cooperative beamforming (CBF) at base stations (BSs), RISs, and users. Firstly, we investigate the fractional programing to convert the weighted sum-rate (WSR) maximization problem into a tractable optimization problem. Then, the alternating optimization framework is employed to decompose the transformed problem into a sequence of subproblems, i.e., hybrid BF (HBF) at BSs, passive BF at RISs, and combining at users. In particular, the alternating direction method of multipliers algorithm is utilized to solve the HBF subproblem at BSs. Concretely, the analog BF design with unit-modulus constraints is solved by the manifold optimization (MO) while we obtain a closed-form solution to the digital BF design that is essentially a convex least-square problem. Additionally, the passive BF at RISs and the analog combining at users are designed by primal-dual subgradient and MO methods. Moreover, considering heavy communication costs in conventional CF-mMIMO systems, we propose a partially-connected CF-mMIMO (P-CF-mMIMO) framework to decrease the number of connections among BSs and users. To better compromise WSR performance and network costs, we formulate the BS selection problem in the P-CF-mMIMO system as a binary integer quadratic programming (BIQP) problem, and develop a relaxed linear approximation algorithm to handle this BIQP problem. Finally, numerical results demonstrate superiorities of our proposed algorithms over baseline counterparts.


翻译:首先,我们调查了将加权总和(WSR)最大化问题转换成可移植最佳化问题的分数程序。然后,采用交替优化框架将变换的问题分解成子问题序列,即BS的混合BF(HBF),IRIS的被动BF(CF),以及用户的结合。主要挑战是在基站(BSs)、RISS和用户中高效地设计合作波束(CBF)系统。首先,我们调查了将加权总和(WSR)最大化问题转换成一个可移植的最佳优化问题。然后,采用交替优化框架将变换的问题分解成一个子问题序列,即BS(HBBF)的混合BF(HBF),RIS的被动BF(B-M),以及用户的混合组合。特别地,乘以交替方向方法解决了BSSQ的HBF子问题。具体地,用单位-M(M(MO)的模拟BF(M-F)的模型设计和M(O-M-IF(O-IF) IM(M-IL-IL-IL-IF) 的模型的模型的模型的模型的模型的模型的升级)的模型,通过我们设计的模型的模型的模型的模型的模型的模型的模型的模型的模型和模型的模型的模型的模型的模型的模型的模型的模型的模型的模型和模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的计算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
10+阅读 · 2021年2月18日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员