Graph-based procedural materials are ubiquitous in content production industries. Procedural models allow the creation of photorealistic materials with parametric control for flexible editing of appearance. However, designing a specific material is a time-consuming process in terms of building a model and fine-tuning parameters. Previous work [Hu et al. 2022; Shi et al. 2020] introduced material graph optimization frameworks for matching target material samples. However, these previous methods were limited to optimizing differentiable functions in the graphs. In this paper, we propose a fully differentiable framework which enables end-to-end gradient based optimization of material graphs, even if some functions of the graph are non-differentiable. We leverage the Differentiable Proxy, a differentiable approximator of a non-differentiable black-box function. We use our framework to match structure and appearance of an output material to a target material, through a multi-stage differentiable optimization. Differentiable Proxies offer a more general optimization solution to material appearance matching than previous work.
翻译:以图表为基础的程序材料在内容生产行业中无处不在。程序模型允许为灵活编辑外观而创建具有参数控制的光现实材料。然而,设计特定材料在建立模型和微调参数方面是一个耗时的过程。以前的工作[Hu等人,2022年;Shi等人,2020年]采用了材料图形优化框架,以匹配目标材料样本。然而,这些先前的方法仅限于优化图中可区分的功能。在本文件中,我们提出了一个完全不同的框架,使基于端到端的材料图案优化,即使图形的某些功能是非差别的。我们利用了可区别的代号,即非差别黑盒功能的可区别的代号。我们利用我们的框架,通过多阶段的优化,将输出材料的结构和外观与目标材料相匹配。不同的可能性的近似点为与以往工作相匹配的物质外观提供了更普遍的优化解决方案。