Statistical power is a measure of the replicability of a categorical hypothesis test. Formally, it is the probability of detecting an effect, if there is a true effect present in the population. Hence, optimizing statistical power as a function of some parameters of a hypothesis test is desirable. However, for most hypothesis tests, the explicit functional form of statistical power for individual model parameters is unknown; but calculating power for a given set of values of those parameters is possible using simulated experiments. These simulated experiments are usually computationally expensive. Hence, developing the entire statistical power manifold using simulations can be very time-consuming. We propose a novel genetic algorithm-based framework for learning statistical power manifolds. For a multiple linear regression $F$-test, we show that the proposed algorithm/framework learns the statistical power manifold much faster as compared to a brute-force approach as the number of queries to the power oracle is significantly reduced. We also show that the quality of learning the manifold improves as the number of iterations increases for the genetic algorithm. Such tools are useful for evaluating statistical power trade-offs when researchers have little information regarding a priori `best guesses' of primary effect sizes of interest or how sampling variability in non-primary effects impacts power for primary ones.


翻译:统计能力是绝对假设测试的可复制性的一个尺度。 形式上, 这是检测效果的概率, 如果在人口中确实存在某种效果的话。 因此, 最好将统计能力优化为假设测试某些参数的函数。 然而, 在大多数假设测试中, 单个模型参数的统计能力的明确功能形式并不为人所知; 但是, 使用模拟实验可以计算出这些参数的一组特定值的计算能力。 这些模拟实验通常在计算上花费大量费用。 因此, 利用模拟开发整个统计能力多元体可能非常耗时。 我们提议了一个基于基因算法的新框架, 用于学习统计能力多元体。 对于多线性回归, 我们显示, 提议的算法/框架比粗力方法要快得多地学习统计能力, 因为对电源或电源的查询数量显著减少。 我们还表明, 学习多元性改进的质量是基因算法的迭代数增加。 当研究人员对原始效应的先前“ 最佳猜想想力” 或非主要效果的抽样影响的信息很少时, 这些工具对于评估统计力量的权衡是有用的。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月1日
Arxiv
0+阅读 · 2023年2月28日
Arxiv
0+阅读 · 2023年2月27日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员