We present MargNet, a deep learning-based classifier for identifying stars, quasars and compact galaxies using photometric parameters and images from the Sloan Digital Sky Survey (SDSS) Data Release 16 (DR16) catalogue. MargNet consists of a combination of Convolutional Neural Network (CNN) and Artificial Neural Network (ANN) architectures. Using a carefully curated dataset consisting of 240,000 compact objects and an additional 150,000 faint objects, the machine learns classification directly from the data, minimising the need for human intervention. MargNet is the first classifier focusing exclusively on compact galaxies and performs better than other methods to classify compact galaxies from stars and quasars, even at fainter magnitudes. This model and feature engineering in such deep learning architectures will provide greater success in identifying objects in the ongoing and upcoming surveys, such as Dark Energy Survey (DES) and images from the Vera C. Rubin Observatory.
翻译:我们介绍MargNet,这是一个利用Sloan数字天空测量数据发布16(DR16)目录中的光度参数和图像来识别恒星、类星和紧凑星系的深层学习分类器。MargNet由进化神经网络(CNN)和人工神经网络(ANN)结构的组合组成。利用由240,000个紧凑物体和另外150,000个微弱物体组成的精心整理的数据集,机器直接从数据中学习分类,尽量减少对人类干预的需要。MargNet是第一个专门侧重于紧凑星系的分类器,其表现优于将紧凑星系和类星系从星系和类星系(甚至从较弱的星级)分类的其他方法。这种深层学习结构中的模型和特征工程将更成功地确定正在进行的和即将进行的调查中的物体,例如暗能调查(DES)和Vera C.Rubin观测站的图像。