Spin plays a considerable role in table tennis, making a shot's trajectory harder to read and predict. However, the spin is challenging to measure because of the ball's high velocity and the magnitude of the spin values. Existing methods either require extremely high framerate cameras or are unreliable because they use the ball's logo, which may not always be visible. Because of this, many table tennis-playing robots ignore the spin, which severely limits their capabilities. This paper proposes an easily implementable and reliable spin estimation method. We developed a dotted-ball orientation estimation (DOE) method, that can then be used to estimate the spin. The dots are first localized on the image using a CNN and then identified using geometric hashing. The spin is finally regressed from the estimated orientations. Using our algorithm, the ball's orientation can be estimated with a mean error of 2.4{\deg} and the spin estimation has an relative error lower than 1%. Spins up to 175 rps are measurable with a camera of 350 fps in real time. Using our method, we generated a dataset of table tennis ball trajectories with position and spin, available on our project page.
翻译:在桌球网球中,许多台式网球游戏机器人忽略了旋转,严重限制了它们的能力。本文提出了一个容易执行和可靠的旋转估计方法。我们开发了一个点球方向估计(DOE)方法,然后可以用来估计旋转。这些点首先通过CNN在图像上定位,然后通过几何散射来确定。这些点最终从估计方向中反射出来。使用我们的算法,可以估计球的方向,平均误差为2.4~deg},而旋转估计的误差则小于1%。在实时时,我们用350英尺的相机测量到175 rps。我们用我们的方法制作了一张有位置和旋转的表格网球轨迹数据集。我们用我们的方法制作了一张带有位置和旋转页面的网球轨迹。</s>