Recent advances in decoding language from brain signals (EEG and MEG) have been significantly driven by pre-trained language models, leading to remarkable progress on publicly available non-invasive EEG/MEG datasets. However, previous works predominantly utilize teacher forcing during text generation, leading to significant performance drops without its use. A fundamental issue is the inability to establish a unified feature space correlating textual data with the corresponding evoked brain signals. Although some recent studies attempt to mitigate this gap using an audio-text pre-trained model, Whisper, which is favored for its signal input modality, they still largely overlook the inherent differences between audio signals and brain signals in directly applying Whisper to decode brain signals. To address these limitations, we propose a new multi-stage strategy for semantic brain signal decoding via vEctor-quantized speCtrogram reconstruction for WHisper-enhanced text generatiOn, termed BrainECHO. Specifically, BrainECHO successively conducts: 1) Discrete autoencoding of the audio spectrogram; 2) Brain-audio latent space alignment; and 3) Semantic text generation via Whisper finetuning. Through this autoencoding--alignment--finetuning process, BrainECHO outperforms state-of-the-art methods under the same data split settings on two widely accepted resources: the EEG dataset (Brennan) and the MEG dataset (GWilliams). The innovation of BrainECHO, coupled with its robustness and superiority at the sentence, session, and subject-independent levels across public datasets, underscores its significance for language-based brain-computer interfaces.
翻译:暂无翻译