Quantum annealing is a specialized type of quantum computation that aims to use quantum fluctuations in order to obtain global minimum solutions of combinatorial optimization problems. D-Wave Systems, Inc., manufactures quantum annealers, which are available as cloud computing resources, and allow users to program the anneal schedules used in the annealing computation. In this paper, we are interested in improving the quality of the solutions returned by a quantum annealer by encoding an initial state. We explore two D-Wave features allowing one to encode such an initial state: the reverse annealing and the h-gain features. Reverse annealing (RA) aims to refine a known solution following an anneal path starting with a classical state representing a good solution, going backwards to a point where a transverse field is present, and then finishing the annealing process with a forward anneal. The h-gain (HG) feature allows one to put a time-dependent weighting scheme on linear ($h$) biases of the Hamiltonian, and we demonstrate that this feature likewise can be used to bias the annealing to start from an initial state. We also consider a hybrid method consisting of a backward phase resembling RA, and a forward phase using the HG initial state encoding. Importantly, we investigate the idea of iteratively applying RA and HG to a problem, with the goal of monotonically improving on an initial state that is not optimal. The HG encoding technique is evaluated on a variety of input problems including the weighted Maximum Cut problem and the weighted Maximum Clique problem, demonstrating that the HG technique is a viable alternative to RA for some problems. We also investigate how the iterative procedures perform for both RA and HG initial state encoding on random spin glasses with the native connectivity of the D-Wave Chimera and Pegasus chips.


翻译:量子退火是一种专门的量子计算方法,旨在利用量子波动以获得组合优化问题的全局最小解。D-Wave Systems,Inc.制造量子退火器,作为云计算资源可用,并允许用户编程退火计算中使用的退火计划。在本文中,我们致力于通过编码初始状态来改善量子退火器返回的解决方案质量。我们探讨两个D-Wave特性,允许编码这样的初始状态:反向退火和h增益。反向退火(RA)旨在在退火路径上细化已知解决方案,从代表良好解的经典状态开始,向后到存在横向场的点,然后以前向退火完成退火过程。h增益(HG)特征允许对哈密顿线性($h$)偏差施加时间相关的加权方案,我们证明该特征同样可用于偏置退火以从初始状态开始。我们还考虑了一种混合方法,包括一个类似RA的反向阶段,和一个使用HG初始状态编码的正向阶段。重要的是,我们研究了对一个问题迭代应用RA和HG的想法,目标是不断改进不是最优的初始状态。HG编码技术在各种输入问题上进行了评估,包括加权最大割问题和加权最大团问题,证明HG技术是RA某些问题的可行替代方法。我们还研究了在具有D-Wave Chimera和Pegasus芯片本机连接性的随机自旋玻璃上执行RA和HG初始状态编码的迭代过程的表现。

0
下载
关闭预览

相关内容

【2023新书】随机模型基础,815页pdf
专知会员服务
102+阅读 · 2023年5月10日
专知会员服务
43+阅读 · 2021年7月1日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
13+阅读 · 2022年10月20日
Arxiv
21+阅读 · 2018年5月23日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员