This paper presents the first analysis of parameter-uniform convergence for a hybridizable discontinuous Galerkin (HDG) method applied to a singularly perturbed convection-diffusion problem in 2D using a Shishkin mesh. The primary difficulty lies in accurately estimating the convection term in the layer, where existing methods often fall short. To address this, a novel error control technique is employed, along with reasonable assumptions regarding the stabilization function. The results show that, with polynomial degrees not exceeding $k$, the method achieves supercloseness of almost $k+\frac{1}{2}$ order in an energy norm. Numerical experiments confirm the theoretical accuracy and efficiency of the proposed method.
翻译:暂无翻译