The imbalance problem is widespread in the field of machine learning, which also exists in multimodal learning areas caused by the intrinsic discrepancy between modalities of samples. Recent works have attempted to solve the modality imbalance problem from algorithm perspective, however, they do not fully analyze the influence of modality bias in datasets. Concretely, existing multimodal datasets are usually collected under specific tasks, where one modality tends to perform better than other ones in most conditions. In this work, to comprehensively explore the influence of modality bias, we first split existing datasets into different subsets by estimating sample-wise modality discrepancy. We surprisingly find that: the multimodal models with existing imbalance algorithms consistently perform worse than the unimodal one on specific subsets, in accordance with the modality bias. To further explore the influence of modality bias and analyze the effectiveness of existing imbalance algorithms, we build a balanced audiovisual dataset, with uniformly distributed modality discrepancy over the whole dataset. We then conduct extensive experiments to re-evaluate existing imbalance algorithms and draw some interesting findings: existing algorithms only provide a compromise between modalities and suffer from the large modality discrepancy of samples. We hope that these findings could facilitate future research on the modality imbalance problem.


翻译:机械学习领域普遍存在不平衡问题,由于抽样方法之间的内在差异,也存在于多式学习领域。最近的工作试图从算法角度解决模式不平衡问题,但是,它们没有完全分析数据集中模式偏差的影响。具体地说,现有的多式数据集通常在具体任务下收集,在多数情况下,一种模式往往比其他模式效果更好。在这项工作中,为了全面探讨模式偏差的影响,我们首先通过估计抽样方法的差异,将现有数据集分成不同的子集。我们令人惊讶地发现:现有不平衡算法的多式联运模型在具体子集上的表现总是比单式模型更差,但根据模式偏差,为了进一步探讨模式偏差的影响,分析现有不平衡算法的有效性,我们建立一个平衡的视听数据集,在整个条件下统一分布模式的差异。然后我们进行广泛的试验,重新评价现有的不平衡算法,并得出一些有趣的结论:现有的算法只能为模式提供妥协,并且由于模式差异很大而受模式差异的影响。我们希望这些结论能够促进今后对模式不平衡问题的研究。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
28+阅读 · 2022年3月28日
Arxiv
33+阅读 · 2022年2月15日
A Survey on Data Augmentation for Text Classification
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员