With the explosive growth of social media, opinionated postings with emojis have increased explosively. Many emojis are used to express emotions, attitudes, and opinions. Emoji representation learning can be helpful to improve the performance of emoji-related natural language processing tasks, especially in text sentiment analysis. However, most studies have only utilized the fixed descriptions provided by the Unicode Consortium without consideration of actual usage scenarios. As for the sentiment analysis task, many researchers ignore the emotional impact of the interaction between text and emojis. It results that the emotional semantics of emojis cannot be fully explored. In this work, we propose a method called EmoGraph2vec to learn emoji representations by constructing a co-occurrence graph network from social data and enriching the semantic information based on an external knowledge base EmojiNet to embed emoji nodes. Based on EmoGraph2vec model, we design a novel neural network to incorporate text and emoji information into sentiment analysis, which uses a hybrid-attention module combined with TextCNN-based classifier to improve performance. Experimental results show that the proposed model can outperform several baselines for sentiment analysis on benchmark datasets. Additionally, we conduct a series of ablation and comparison experiments to investigate the effectiveness and interpretability of our model.
翻译:随着社交媒体的爆炸性增长,带有情感色彩的插图有了爆炸性的增长。许多情感形象被用于表达情感、态度和意见。Emoji代表学习可以帮助改善与情感、态度和观点有关的自然语言处理任务的性能,特别是在文字情绪分析方面。然而,大多数研究只使用了Unicode Conform提供的固定描述,而没有考虑到实际使用情景。关于情绪分析任务,许多研究人员忽视了文本和表情相互作用的情感影响。结果造成情感分析无法充分探索情感情感的语义。在这项工作中,我们提出了一个名为EmoGraph2vec 的方法,通过从社会数据中建立一个共同生成的图形网络,并丰富基于外部知识基础EmojiNet提供的语义信息,以嵌入化情感节点。在EmoGraph2vec模型模型上,我们设计了一个新型神经网络,将文字和表情信息纳入到情感分析中,该模型将使用混合式模块,与基于文本的分类和感官分析相结合。一个实验性实验性模型,将显示一个实验性基准,将显示我们若干实验性基准数据分析。