We present a new method for linear and nonlinear, lagged and contemporaneous constraint-based causal discovery from observational time series in the presence of latent confounders. We show that existing causal discovery methods such as FCI and variants suffer from low recall in the autocorrelated time series case and identify low effect size of conditional independence tests as the main reason. Information-theoretical arguments show that effect size can often be increased if causal parents are included in the conditioning sets. To identify parents early on, we suggest an iterative procedure that utilizes novel orientation rules to determine ancestral relationships already during the edge removal phase. We prove that the method is order-independent, and sound and complete in the oracle case. Extensive simulation studies for different numbers of variables, time lags, sample sizes, and further cases demonstrate that our method indeed achieves much higher recall than existing methods for the case of autocorrelated continuous variables while keeping false positives at the desired level. This performance gain grows with stronger autocorrelation. At https://github.com/jakobrunge/tigramite we provide Python code for all methods involved in the simulation studies.


翻译:我们提出一种新的方法,在潜伏混淆者在场的情况下,从观察时间序列中发现线性和非线性、滞后和同时的制约性因果性发现;我们表明,在与自动相关的时间序列中,现有因果性发现方法,如FCI和变异物等,在与自动相关的时间序列中被低调召回,并查明有条件独立测试的低影响大小是主要原因;信息理论论据表明,如果将因果性父母包括在调节装置中,其影响大小往往会增加;为了及早确定父母,我们建议采用迭代程序,利用新式定向规则来确定在边缘清除阶段已经存在的祖传关系;我们证明,在甲骨文中,该方法是不受秩序约束的,健全和完整的。对不同数量的变量、时间滞后、样本大小和进一步案例进行广泛的模拟研究表明,我们的方法确实比与因果性相关持续变量有关的现有方法的记忆要高得多,同时将假阳性保持在理想的水平上。我们建议,这种性能随着更强大的自动反应而增长。我们证明,在OZ/Gigh.com/jakorunge/tigramite中,我们为模拟研究中涉及的所有方法都提供Pythoncolgon。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员