As neural networks are increasingly being applied to real-world applications, mechanisms to address distributional shift and sequential task learning without forgetting are critical. Methods incorporating network expansion have shown promise by naturally adding model capacity for learning new tasks while simultaneously avoiding catastrophic forgetting. However, the growth in the number of additional parameters of many of these types of methods can be computationally expensive at larger scales, at times prohibitively so. Instead, we propose a simple task-specific feature map transformation strategy for continual learning, which we call Efficient Feature Transformations (EFTs). These EFTs provide powerful flexibility for learning new tasks, achieved with minimal parameters added to the base architecture. We further propose a feature distance maximization strategy, which significantly improves task prediction in class incremental settings, without needing expensive generative models. We demonstrate the efficacy and efficiency of our method with an extensive set of experiments in discriminative (CIFAR-100 and ImageNet-1K) and generative (LSUN, CUB-200, Cats) sequences of tasks. Even with low single-digit parameter growth rates, EFTs can outperform many other continual learning methods in a wide range of settings.
翻译:随着神经网络越来越多地应用于现实世界的应用,处理分配转移和连续学习的机制至关重要。纳入网络扩展的方法通过自然增加学习新任务的模型能力,同时避免灾难性的遗忘,显示了前景。然而,许多这类方法的额外参数的增加在更大的尺度上可能计算得非常昂贵,有时甚至令人望而却步。相反,我们提出了一个简单的任务特有特征地图转换战略,用于持续学习,我们称之为“高效功能转换 ” ( EFTs ) 。这些EFTs为学习新任务提供了强大的灵活性,在基础结构中增加了最低限度参数。我们进一步提出了地貌距离最大化战略,大大改进了阶级递增环境中的任务预测,而不需要昂贵的基因化模型。我们展示了我们方法的效能和效率,在歧视(CIFAR-100和图像网-1K)和基因化(LSUN, CUB-200, Cats) 等一系列任务序列中进行了广泛的实验。即使使用低位参数增长率,EFTs也可以在广泛的环境中超越许多其他持续学习方法。