We consider the problem of estimating causal effects of interventions from observational data when well-known back-door and front-door adjustments are not applicable. We show that when an identifiable causal effect is subject to an implicit functional constraint that is not deducible from conditional independence relations, the estimator of the causal effect can exhibit bias in small samples. This bias is related to variables that we call trapdoor variables. We use simulated data to study different strategies to account for trapdoor variables and suggest how the related trapdoor bias might be minimized. The importance of trapdoor variables in causal effect estimation is illustrated with real data from the Life Course 1971-2002 study. Using this dataset, we estimate the causal effect of education on income in the Finnish context. Bayesian modelling allows us to take the parameter uncertainty into account and to present the estimated causal effects as posterior distributions.
翻译:我们考虑了在众所周知的后门和前门调整不适用时从观察数据中估计干预的因果影响的问题。我们表明,当可识别的因果影响受到一种无法从有条件的独立关系中排除的隐含功能限制,而这种因果影响估计者在小型样本中可能表现出偏见。这种偏差与我们称之为陷阱门变量的变量有关。我们利用模拟数据研究不同的战略来计算陷阱门变量,并就如何尽量减少相关的陷阱门偏差提出建议。用1971-2002年生命期研究中的真实数据来说明陷阱门变量在因果关系估计中的重要性。我们利用这一数据集来估计教育对芬兰收入的因果影响。贝斯模型使我们能够考虑到参数的不确定性,并将估计的因果影响作为后传分布来。