We describe a regularized regression model for the selection of gene-environment (GxE) interactions. The model focuses on a single environmental exposure and induces a main-effect-before-interaction hierarchical structure. We propose an efficient fitting algorithm and screening rules that can discard large numbers of irrelevant predictors with high accuracy. We present simulation results showing that the model outperforms existing joint selection methods for (GxE) interactions in terms of selection performance, scalability and speed, and provide a real data application. Our implementation is available in the gesso R package.
翻译:我们描述基因-环境相互作用选择的常规回归模型,该模型侧重于单一的环境接触,并引致一种在互动之前产生主要效应的等级结构。我们建议一种高效的恰当算法和筛选规则,能够以高精度抛弃大量无关的预测数据。我们提出模拟结果,表明该模型在选择性能、可缩放性和速度方面优于现有的(GxE)相互作用联合选择方法,并提供了真正的数据应用。我们的实施情况可以在 gesso R 软件包中找到。