Heated debates continue over the best autonomous driving framework. The classic modular pipeline is widely adopted in the industry owing to its great interpretability and stability, whereas the end-to-end paradigm has demonstrated considerable simplicity and learnability along with the rise of deep learning. We introduce a new modularized end-to-end reinforcement learning framework (ModEL) for autonomous driving, which combines the merits of both previous approaches. The autonomous driving stack of ModEL is decomposed into perception, planning, and control module, leveraging scene understanding, end-to-end reinforcement learning, and PID control respectively. Furthermore, we build a fully functional autonomous vehicle to deploy this framework. Through extensive simulation and real-world experiments, our framework has shown great generalizability to various complicated scenarios and outperforms the competing baselines.


翻译:围绕最佳自主驾驶框架的激烈辩论还在继续,传统模块化管道因其可解释性和稳定性而在该行业被广泛采用,而端到端模式则显示出相当简单和可学习性,再加上深层学习的兴起。我们为自主驾驶引入了新的模块化端到端强化学习框架(ModEL),这结合了以前两种做法的优点。MedEL的自主驾驶堆已经分解成感知、规划和控制模块,分别利用现场理解、端到端强化学习和PID控制。此外,我们建立了完全功能的自主工具来部署这一框架。通过广泛的模拟和现实世界实验,我们的框架已经显示出对各种复杂情景的高度普遍性,超越了相互竞争的基线。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
12+阅读 · 2021年6月21日
VIP会员
相关VIP内容
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员