In this article, a general family of bivariate distributions is used to model competing risks data with dependent factors. The general structure of competing risks data considered here includes ties. A comprehensive inferential framework for the proposed model is presented: maximum likelihood estimation, confidence interval construction, and model selection within the bivariate family of distributions for a given dependent competing risks data. The inferential methods are very convenient to implement. Through detailed simulations, the inferential methods are observed to provide quite reasonable results. Analysis of a real data from the Diabetic Retinopathy Study is carried out with the help of the proposed model as an illustrative example.
翻译:在本条中,用双轨分配法的一般组合来用依附因素来模拟相互竞争的风险数据。这里所考虑的相互竞争的风险数据的一般结构包括关联关系。提出了拟议模式的综合推论框架:最大可能性估算、信任间隔构建和在双轨分配法中选择某一依附竞争风险数据的模式。推论方法非常方便实施。通过详细的模拟,发现推论方法可以提供相当合理的结果。在拟议模型的帮助下,对糖尿病病理病理学研究产生的真实数据进行了分析,作为示例。