Multi-view feature extraction is an efficient approach for alleviating the issue of dimensionality in highdimensional multi-view data. Contrastive learning (CL), which is a popular self-supervised learning method, has recently attracted considerable attention. In this study, we propose a novel multi-view feature extraction method based on triple contrastive heads, which combines the sample-, recovery- , and feature-level contrastive losses to extract the sufficient yet minimal subspace discriminative information in compliance with information bottleneck principle. In MFETCH, we construct the feature-level contrastive loss, which removes the redundent information in the consistency information to achieve the minimality of the subspace discriminative information. Moreover, the recovery-level contrastive loss is also constructed in MFETCH, which captures the view-specific discriminative information to achieve the sufficiency of the subspace discriminative information.The numerical experiments demonstrate that the proposed method offers a strong advantage for multi-view feature extraction.


翻译:多视角特征提取是缓解高维多视角数据问题的有效方法。对比学习(Contrastive Learning, CL)是一种流行的自监督学习方法,近来受到了广泛关注。本文提出一种新的基于三重对比度头的多视角特征提取方法,结合样本级、恢复级和特征级对比度损失,以符合信息瓶颈原理的足够但最小子空间判别信息。在本文的方法中,我们构建了特征级对比度损失,该损失可以在一致性信息中消除冗余信息,以实现子空间判别信息的最小化。此外,本文还构建了恢复级对比度损失,该损失可捕获视图特定的判别信息,以实现子空间判别信息的充分性。 数值实验表明,该方法在多视角特征提取方面具有显著优势。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
最新10篇对比学习推荐前沿工作
机器学习与推荐算法
2+阅读 · 2022年9月14日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月10日
Arxiv
13+阅读 · 2021年10月22日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员