The current state-of-the-art methods for showing inapproximability in PPAD arise from the $\varepsilon$-Generalized-Circuit ($\varepsilon$-GCircuit) problem. Rubinstein (2018) showed that there exists a small unknown constant $\varepsilon$ for which $\varepsilon$-GCircuit is PPAD-hard, and subsequent work has shown hardness results for other problems in PPAD by using $\varepsilon$-GCircuit as an intermediate problem. We introduce Pure-Circuit, a new intermediate problem for PPAD, which can be thought of as $\varepsilon$-GCircuit pushed to the limit as $\varepsilon \rightarrow 1$, and we show that the problem is PPAD-complete. We then prove that $\varepsilon$-GCircuit is PPAD-hard for all $\varepsilon < 0.1$ by a reduction from Pure-Circuit, and thus strengthen all prior work that has used GCircuit as an intermediate problem from the existential-constant regime to the large-constant regime. We show that stronger inapproximability results can be derived by reducing directly from Pure-Circuit. In particular, we prove tight inapproximability results for computing $\varepsilon$-well-supported Nash equilibria in two-action polymatrix games, as well as for finding approximate equilibria in threshold games.


翻译:在 PPAD 中显示不协调状态的最新方法源自于 $\ varepsilon$Gncruit 问题。 Rubinstein (2018) 显示存在一个小未知的常数$\ varepsilon$- Gcrcit 问题, $\ varepsilon$- Gcrcit 是PAD 硬性的, 其后的工作通过使用 $\ varepslon$- Gcrcit 来显示 PPAD 中其他问题的硬性结果。 我们引入 Pure- circut, 这是Pure- Circut的一个新的中间问题, 这可以被视为 $\ varepsilon$- Gcrcruit 问题。 我们随后证明, $\ varepsluslusluslusional- blickral- plickral- proqual- probility roal- probility robal- robal- robal- roal- labilental- roup roup roal maislity, 通过 roblick- supal- robal robaltial- supilentaltial- robal- robal- supaltialtial be roblegal be robalislity lemental mabal ma 显示, ro) 一种更强有力的中间问题可以直接显示, 问题显示, 我们的中, 我们的中, 我们的常压结果显示, 我们的常压为比。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月7日
Arxiv
0+阅读 · 2022年11月4日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员