For first-order smooth optimization, the research on the acceleration phenomenon has a long-time history. Until recently, the mechanism leading to acceleration was not successfully uncovered by the gradient correction term and its equivalent implicit-velocity form. Furthermore, based on the high-resolution differential equation framework with the corresponding emerging techniques, phase-space representation and Lyapunov function, the squared gradient norm of Nesterov's accelerated gradient descent (\texttt{NAG}) method at an inverse cubic rate is discovered. However, this result cannot be directly generalized to composite optimization widely used in practice, e.g., the linear inverse problem with sparse representation. In this paper, we meticulously observe a pivotal inequality used in composite optimization about the step size $s$ and the Lipschitz constant $L$ and find that it can be improved tighter. We apply the tighter inequality discovered in the well-constructed Lyapunov function and then obtain the proximal subgradient norm minimization by the phase-space representation, regardless of gradient-correction or implicit-velocity. Furthermore, we demonstrate that the squared proximal subgradient norm for the class of iterative shrinkage-thresholding algorithms (ISTA) converges at an inverse square rate, and the squared proximal subgradient norm for the class of faster iterative shrinkage-thresholding algorithms (FISTA) is accelerated to convergence at an inverse cubic rate.
翻译:对于第一级平稳优化,关于加速现象的研究具有悠久的历史。直到最近,导致加速现象的机制还没有通过梯度校正术语及其等效的隐含速度形式成功发现。此外,根据高分辨率差异方程框架及其相应的新兴技术、阶段空间代表制和Lyapunov函数,发现了Nesterov加速梯度下降(\textt{NAG})方法的平方梯度标准值以反立方速率。然而,这一结果无法直接普及到实践中广泛使用的复合优化,例如,无代表性的线性反问题。在本文件中,我们仔细观察了在综合优化中使用的关于步数美元和利普施茨恒定值等高方位的临界不平等性,并发现可以加以改进。我们应用了在精密的Lyapunov梯度下降(\ textt{NAG}函数中发现的更紧密的梯度梯度梯度梯度标准,然后通过阶段空间代表制获得最接近的次梯度标准最小化标准最小化的最小化标准,而不论梯度-校正校正校校正校或暗速度如何校正。此外,我们证明,正显示,正正正准准的准的准的准准准准准的亚基压值正正正正正正方方位方位方位标准在正方位的方位的方位方位方位方位方方方方方方方位方方方方方方方方方方方方方方方方位的方位的方位的方位的方位的方位的方位的方位的方位的方位的方位的方位方位方位的方位的方位的方位方位的方位的方位压在正方位的方位的方位的方位的方位的方位的方位的方位的方位的方位压中,在正方位的方位的方位的方位的方位方位的方位方位的方位的方位的方位的方位的方位方位方位的方位的方位的方位的方位方位方位方位方位方位方位方位方位方位方位方位方位方位方位方位方位方位方位