The saddle point (SP) calculation is a grand challenge for computationally intensive energy function in computational chemistry area, where the saddle point may represent the transition state (TS). The traditional methods need to evaluate the gradients of the energy function at a very large number of locations. To reduce the number of expensive computations of the true gradients, we propose an active learning framework consisting of a statistical surrogate model, Gaussian process regression (GPR) for the energy function, and a single-walker dynamics method, gentle accent dynamics (GAD), for the saddle-type transition states. SP is detected by the GAD applied to the GPR surrogate for the gradient vector and the Hessian matrix. Our key ingredient for efficiency improvements is an active learning method which sequentially designs the most informative locations and takes evaluations of the original model at these locations to train GPR. We formulate this active learning task as the optimal experimental design problem and propose a very efficient sample-based sub-optimal criterion to construct the optimal locations. We show that the new method significantly decreases the required number of energy or force evaluations of the original model.
翻译:在计算化学领域,马鞍点的计算是计算密集能源功能的巨大挑战,因为马鞍点可能代表转型状态(TS) 。传统方法需要评估大量地点的能源功能梯度。为了减少真正梯度的昂贵计算数量,我们提议一个积极的学习框架,其中包括统计替代模型、能源功能高斯进程回归(GPR)和马鞍型过渡状态的单行人动态方法、温调口音动态(GAD)。GAD检测到的SP应用到梯度矢量和赫森矩阵的GPR代谢点。我们提高效率的关键要素是一种积极的学习方法,按顺序设计最丰富信息的地点,并对这些地点的原始模型进行评估,以培训GPR。我们把这个积极的学习任务作为最佳的实验设计问题,并提出一个非常高效的基于样本的亚最佳标准,以构建最佳位置。我们指出,新方法大大减少了原始模型所需的能源或力量评估的数量。