In peer review systems, reviewers are often asked to evaluate various features of submissions, such as technical quality or novelty. A score is given to each of the predefined features and based on these the reviewer has to provide an overall quantitative recommendation. However, reviewers differ in how much they value different features. It may be assumed that each reviewer has her own mapping from a set of criteria scores (score vectors) to a recommendation, and that different reviewers have different mappings in mind. Recently, Noothigattu, Shah and Procaccia introduced a novel framework for obtaining an aggregated mapping by means of Empirical Risk Minimization based on $L(p,q)$ loss functions, and studied its axiomatic properties in the sense of social choice theory. We provide a body of new results about this framework. On the one hand we study a trade-off between strategy-proofness and the ability of the method to properly capture agreements of the majority of reviewers. On the other hand, we show that dropping a certain unrealistic assumption makes the previously reported results to be no longer valid. Moreover, in the general case, strategy-proofness fails dramatically in the sense that a reviewer is able to make significant changes to the solution in her favor by arbitrarily small changes to their true beliefs. In particular, no approximate version of strategy-proofness is possible in this general setting since the method is not even continuous w.r.t. the data. Finally we propose a modified aggregation algorithm which is continuous and show that it has good axiomatic properties.


翻译:在同侪审查体系中,经常要求审查者评估提交材料的不同特点,例如技术质量或新颖性;对每个预先界定的特性给予一个分数,审查者必须根据这些特点提供总体定量建议;然而,审查者对不同特性的价值有不同之处;可以假定,每个审查者有自己的地图,从一套标准分数(核心矢量)到一项建议,不同审查者有不同的图象;最近,Noothigattu、Shah和Procaccia引入了一个新框架,以便通过根据美元(p,q)损失功能实现实证风险最小化的综合绘图,并在此基础上研究其不言明性特性;然而,从社会选择理论的意义上说,我们提供了一系列关于这一框架的新结果。一方面,我们研究的是战略的准确性和正确性方法在正确获取多数审查协议的能力之间的取舍。另一方面,我们发现,放弃某种不切实际的假设使得先前报告的结果不再有效。此外,在一般情况下,战略的准确性、准确性、最终的判断性能显示一个显著的准确性、最终判断是确定一个可能的方法。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员