Unsupervised domain adaptation (UDA) deals with the adaptation process of a model to an unlabeled target domain while annotated data is only available for a given source domain. This poses a challenging task, as the domain shift between source and target instances deteriorates a model's performance when not addressed. In this paper, we propose UBR$^2$S - the Uncertainty-Based Resampling and Reweighting Strategy - to tackle this problem. UBR$^2$S employs a Monte Carlo dropout-based uncertainty estimate to obtain per-class probability distributions, which are then used for dynamic resampling of pseudo-labels and reweighting based on their sample likelihood and the accompanying decision error. Our proposed method achieves state-of-the-art results on multiple UDA datasets with single and multi-source adaptation tasks and can be applied to any off-the-shelf network architecture. Code for our method is available at https://gitlab.com/tringwald/UBR2S.
翻译:未受监督的域适应(UDA) 涉及模型适应无标签目标域的过程, 而附加说明的数据只提供给特定源域。 这是一项具有挑战性的任务, 因为源和目标实例之间的域变换在未处理时会使模型的性能恶化。 在本文件中,我们提议UBRE$2$S - 不确定性的抽查和再加权战略 - 解决这个问题。 UBRE$2$S 使用基于蒙特卡洛的不确定性估计来获得单级概率分布, 然后用于根据假标签的抽样可能性和相应的决定错误进行动态重新标注和重新加权。 我们提议的方法在具有单一和多源适应任务的多个UDA数据集上取得了最新结果, 并可用于任何现成网络结构。 我们方法的代码可在 https://gitlab.com/tringwald/UBR2S查阅 。