The demands of accuracy in measurements and engineering models today, renders the condition number of problems larger. While a corresponding increase in the precision of floating point numbers ensured a stable computing, the uncertainty in convergence when using residue as a stopping criterion has increased. We present an analysis of the uncertainty in convergence when using relative residue as a stopping criterion for iterative solution of linear systems, and the resulting over/under computation for a given tolerance in error. This shows that error estimation is significant for an efficient or accurate solution even when the condition number of the matrix is not large. An $\mathcal{O}(1)$ error estimator for iterations of the CG algorithm was proposed more than two decades ago. Recently, an $\mathcal{O}(k^2)$ error estimator was described for the GMRES algorithm which allows for non-symmetric linear systems as well, where $k$ is the iteration number. We suggest a minor modification in this GMRES error estimation for increased stability. In this work, we also propose an $\mathcal{O}(n)$ error estimator for A-norm and $l_{2}$ norm of the error vector in Bi-CG algorithm. The robust performance of these estimates as a stopping criterion results in increased savings and accuracy in computation, as condition number and size of problems increase.
翻译:今天,测量和工程模型的准确性要求使问题的条件数量增加。 尽管浮动点数精确度的相对增加确保了稳定的计算, 但使用残留物作为停止标准时的趋同性更加不确定。 我们分析了在使用相对残留物作为线性系统迭代解决方案的阻断标准时的趋同性不确定性, 以及由此得出的对错误容忍度的超值计算。 这显示, 即使矩阵条件数不大, 误差估计对于高效或准确的解决方案来说意义重大 。 在这项工作中, 20多年前就提出了 $\ mathcal{O} (美元) 对 CG 算法迭代数的误差估计。 最近, 为 GMRES 算法描述了一个 $\ mathcal{O} (k ⁇ 2) 的误差估计值的不确定性, 允许非对线性系统进行非对称的计算, 美元是偏差数。 我们建议对GRES 的误估计值稍作些修改, 以便提高稳定性。 在这项工作中, 我们还提议在 A- NO 标准中, 的精确度值值计算结果中, 递增的B- calmal- 标准中, 和 的精确度计算结果的精确度值的精确度值将增加。