Simplicial complexes form an important class of topological spaces that are frequently used to in many applications areas such as computer-aided design, computer graphics, and simulation. The representation learning on graphs, which are just 1-d simplicial complexes, has witnessed a great attention and success in the past few years. Due to the additional complexity higher dimensional simplicial hold, there has not been enough effort to extend representation learning to these objects especially when it comes to learn entire-simplicial complex representation. In this work, we propose a method for simplicial complex-level representation learning that embeds a simplicial complex to a universal embedding space in a way that complex-to-complex proximity is preserved. Our method utilizes a simplex-level embedding induced by a pre-trained simplicial autoencoder to learn an entire simplicial complex representation. To the best of our knowledge, this work presents the first method for learning simplicial complex-level representation.


翻译:简易复合体是许多应用领域(例如计算机辅助设计、计算机图形和模拟)经常使用的重要的表层空间。图形上的演示学习只是一维简易复合体,在过去几年中受到极大关注并取得了很大成功。由于更高维的简单手持的复杂程度,没有作出足够的努力,将演示学习扩大到这些物体,特别是在学习整个简易复杂代表物时。在这项工作中,我们提出了一个简化复杂层次的代表学习方法,将一个简单复杂的综合体嵌入一个普遍的嵌入空间,以保持复杂至复合的近距离。我们的方法使用一个经过事先训练的简易自动解密器的简单化嵌入层,学习整个简易复杂的代表物。在我们的知识中,这项工作是学习简易复杂层次代表物的第一种方法。

0
下载
关闭预览

相关内容

表示学习是通过利用训练数据来学习得到向量表示,这可以克服人工方法的局限性。 表示学习通常可分为两大类,无监督和有监督表示学习。大多数无监督表示学习方法利用自动编码器(如去噪自动编码器和稀疏自动编码器等)中的隐变量作为表示。 目前出现的变分自动编码器能够更好的容忍噪声和异常值。 然而,推断给定数据的潜在结构几乎是不可能的。 目前有一些近似推断的策略。 此外,一些无监督表示学习方法旨在近似某种特定的相似性度量。提出了一种无监督的相似性保持表示学习框架,该框架使用矩阵分解来保持成对的DTW相似性。 通过学习保持DTW的shaplets,即在转换后的空间中的欧式距离近似原始数据的真实DTW距离。有监督表示学习方法可以利用数据的标签信息,更好地捕获数据的语义结构。 孪生网络和三元组网络是目前两种比较流行的模型,它们的目标是最大化类别之间的距离并最小化了类别内部的距离。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
专知会员服务
53+阅读 · 2019年12月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
13+阅读 · 2020年4月12日
Arxiv
5+阅读 · 2020年3月26日
Arxiv
35+阅读 · 2020年1月2日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员