In recent years, transformer-based language representation models (LRMs) have achieved state-of-the-art results on difficult natural language understanding problems, such as question answering and text summarization. As these models are integrated into real-world applications, evaluating their ability to make rational decisions is an important research agenda, with practical ramifications. This article investigates LRMs' rational decision-making ability through a carefully designed set of decision-making benchmarks and experiments. Inspired by classic work in cognitive science, we model the decision-making problem as a bet. We then investigate an LRM's ability to choose outcomes that have optimal, or at minimum, positive expected gain. Through a robust body of experiments on four established LRMs, we show that a model is only able to `think in bets' if it is first fine-tuned on bet questions with an identical structure. Modifying the bet question's structure, while still retaining its fundamental characteristics, decreases an LRM's performance by more than 25\%, on average, although absolute performance remains well above random. LRMs are also found to be more rational when selecting outcomes with non-negative expected gain, rather than optimal or strictly positive expected gain. Our results suggest that LRMs could potentially be applied to tasks that rely on cognitive decision-making skills, but that more research is necessary before they can robustly make rational decisions.


翻译:近年来,以变压器为基础的语言代表模式(LRMs)在困难的自然语言理解问题上取得了最先进的结果,例如问题回答和文本总结。这些模式被纳入现实世界应用,评估其做出合理决定的能力是一项重要的研究议程,具有实际影响。这一条通过精心设计的一套决策基准和实验对变压器的合理决策能力进行了调查。在认知科学经典工作的启发下,我们将决策问题作为赌注来模拟。然后我们调查一个LRM是否有能力选择具有最佳或至少具有预期积极收益的结果。通过对四个既定LRMs进行强有力的实验,我们表明,只有首先对同一结构的赌注问题进行精确调整,才能“在赌注中思考”这些模式的合理决策能力。 修改Bet 问题的结构,同时保持其基本特点,平均地将LRM的绩效降低到25 ⁇ 以上,尽管绝对性业绩仍然大大高于随机性。在选择最优或最起码的成绩之前,发现在选择具有预期的、更合理性结果时,才能更合理地进行“在赌注上”思考,而更严格地认为,在选择我们不预期的、更能决定时,这种结果是能够更能地依靠潜在的决定。

0
下载
关闭预览

相关内容

语言表示一直是人工智能、计算语言学领域的研究热点。从早期的离散表示到最近的分散式表示,语言表示的主要研究内容包括如何针对不同的语言单位,设计表示语言的数据结构以及和语言的转换机制,即如何将语言转换成计算机内部的数据结构(理解)以及由计算机内部表示转换成语言(生成)。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员