User and product information associated with a review is useful for sentiment polarity prediction. Typical approaches incorporating such information focus on modeling users and products as implicitly learned representation vectors. Most do not exploit the potential of historical reviews, or those that currently do require unnecessary modifications to model architecture or do not make full use of user/product associations. The contribution of this work is twofold: i) a method to explicitly employ historical reviews belonging to the same user/product to initialize representations, and ii) efficient incorporation of textual associations between users and products via a user-product cross-context module. Experiments on IMDb, Yelp-2013 and Yelp-2014 benchmarks show that our approach substantially outperforms previous state-of-the-art. Since we employ BERT-base as the encoder, we additionally provide experiments in which our approach performs well with Span-BERT and Longformer. Furthermore, experiments where the reviews of each user/product in the training data are downsampled demonstrate the effectiveness of our approach under a low-resource setting.
翻译:与审查有关的用户和产品信息对感知极性预测有用。将此类信息纳入信息重点的典型方法侧重于作为隐性学习的代言媒介的用户和产品模型。多数不利用历史审查的潜力,或目前对模型结构进行不必要修改或没有充分利用用户/产品协会的审查结果。这项工作的贡献有两个方面:(1) 明确使用属于同一用户/产品的历史审查的方法,以启动演示;(2) 通过用户-产品交叉文本模块有效纳入用户和产品之间的文本联系。IMDb、Yelp-2013和Yelp-2014基准实验显示,我们的方法大大超过以前的艺术状态。由于我们使用BERT数据库作为编码器,我们额外提供实验,使我们的方法与Span-BERT和Longferent一起运作良好。此外,对培训数据中每个用户/产品进行的审查被降级的实验展示了我们在低资源环境下采用的方法的有效性。