Cardinality estimation is a fundamental task in database systems and plays a critical role in query optimization. Despite significant advances in learning-based cardinality estimation methods, most existing approaches remain difficult to generalize to new datasets due to their strong dependence on raw data or queries, thus limiting their practicality in real scenarios. To overcome these challenges, we argue that semantics in the schema may benefit cardinality estimation, and leveraging such semantics may alleviate these dependencies. To this end, we introduce ZeroCard, the first semantics-driven cardinality estimation method that can be applied without any dependence on raw data access, query logs, or retraining on the target database. Specifically, we propose to predict data distributions using schema semantics, thereby avoiding raw data dependence. Then, we introduce a query template-agnostic representation method to alleviate query dependence. Finally, we construct a large-scale query dataset derived from real-world tables and pretrain ZeroCard on it, enabling it to learn cardinality from schema semantics and predicate representations. After pretraining, ZeroCard's parameters can be frozen and applied in an off-the-shelf manner. We conduct extensive experiments to demonstrate the distinct advantages of ZeroCard and show its practical applications in query optimization. Its zero-dependence property significantly facilitates deployment in real-world scenarios.
翻译:暂无翻译