Modern hardware design trends have shifted towards specialized hardware acceleration for computationally intensive tasks like machine learning and computer vision. While these complex workloads can be accelerated by commercial GPUs, domain-specific hardware is far more optimal when needing to meet the stringent memory, throughput, and power constraints of mobile and embedded devices. This paper proposes and evaluates a Binary-Enabled Architecture for Neural Network Acceleration (BEANNA), a neural network hardware accelerator capable of processing both floating point and binary network layers. Through the use of a novel 16x16 systolic array based matrix multiplier with processing elements that compute both floating point and binary multiply-adds, BEANNA seamlessly switches between high precision floating point and binary neural network layers. Running at a clock speed of 100MHz, BEANNA achieves a peak throughput of 52.8 GigaOps/second when operating in high precision mode, and 820 GigaOps/second when operating in binary mode. Evaluation of BEANNA was performed by comparing a hybrid network with floating point outer layers and binary hidden layers to a network with only floating point layers. The hybrid network accelerated using BEANNA achieved a 194% throughput increase, a 68% memory usage decrease, and a 66% energy consumption decrease per inference, all this at the cost of a mere 0.23% classification accuracy decrease on the MNIST dataset.
翻译:现代硬件设计趋势已转向专门硬件加速, 用于计算机学习和计算机视觉等计算密集型任务。 虽然这些复杂的工作量可以通过商业 GPP 加速, 但当需要满足移动和嵌入设备的严格内存、 吞吐以及电源限制时, 域特定硬件会更优化。 本文建议并评价神经网络加速( BEANNA) 的二进制强化建筑( 双进制网络硬件加速器) 。 神经网络硬件加速器能处理浮动点和二进制网络层。 通过使用新颖的 16x16 以系统为基础的矩阵矩阵乘数, 包括计算浮点和二进式增加码的处理要素, BEANNA 在高精密浮点和双进神经网络层之间无缝切开关。 以100兆赫兹的时钟速度运行, BEANNA 达到52.8 GigaOps/ 秒的顶点, 在二进制模式运行时, 820 GigaOps/ 秒。 通过使用二进制模式运行 BEANNA 评估, 通过将混合网络与浮动点的外层和二进层进行比较混合网络, 6183 加速网络, 加速递减, 和加速递减。