Fisher's criterion is a widely used tool in machine learning for feature selection. For large search spaces, Fisher's criterion can provide a scalable solution to select features. A challenging limitation of Fisher's criterion, however, is that it performs poorly when mean values of class-conditional distributions are close to each other. Motivated by this challenge, we propose an extension of Fisher's criterion to overcome this limitation. The proposed extension utilizes the available heteroscedasticity of class-conditional distributions to distinguish one class from another. Additionally, we describe how our theoretical results can be casted into a neural network framework, and conduct a proof-of-concept experiment to demonstrate the viability of our approach to solve classification problems.
翻译:渔业者的标准是选择地物的机器学习中广泛使用的工具。 对于大型搜索空间, Fisher 的标准可以为选择地物提供一个可伸缩的解决方案。 然而,对Fisher 标准的一个挑战性限制是,当平均等级条件分配值接近于对方时,该标准表现不佳。我们受这项挑战的驱动,建议延长Fisher 的标准,以克服这一限制。提议的扩展利用现有等级条件分布的高度不稳性来区分一个类别。此外,我们描述了如何把我们的理论结果投放到神经网络框架,并进行概念验证实验,以证明我们解决分类问题的方法是否可行。