Model stealing, i.e., unauthorized access and exfiltration of deep learning models, has become one of the major threats. Proprietary models may be protected by access controls and encryption. However, in reality, these measures can be compromised due to system breaches, query-based model extraction or a disgruntled insider. Security hardening of neural networks is also suffering from limits, for example, model watermarking is passive, cannot prevent the occurrence of piracy and not robust against transformations. To this end, we propose a native authentication mechanism, called AuthNet, which integrates authentication logic as part of the model without any additional structures. Our key insight is to reuse redundant neurons with low activation and embed authentication bits in an intermediate layer, called a gate layer. Then, AuthNet fine-tunes the layers after the gate layer to embed authentication logic so that only inputs with special secret key can trigger the correct logic of AuthNet. It exhibits two intuitive advantages. It provides the last line of defense, i.e., even being exfiltrated, the model is not usable as the adversary cannot generate valid inputs without the key. Moreover, the authentication logic is difficult to inspect and identify given millions or billions of neurons in the model. We theoretically demonstrate the high sensitivity of AuthNet to the secret key and its high confusion for unauthorized samples. AuthNet is compatible with any convolutional neural network, where our extensive evaluations show that AuthNet successfully achieves the goal in rejecting unauthenticated users (whose average accuracy drops to 22.03%) with a trivial accuracy decrease (1.18% on average) for legitimate users, and is robust against model transformation and adaptive attacks.
翻译:暂无翻译