We show that $n$ real numbers can be stored in a constant number of real numbers such that each original real number can be fetched in $O(\log n)$ time. Although our result has implications for many computational geometry problems, we show here, combined with Han's $O(n\sqrt{\log n})$ time real number sorting algorithm [3, arXiv:1801.00776], we can improve the complexity of Kirkpatrick's point location algorithm [8] to $O(n\sqrt{\log n})$ preprocessing time, a constant number of real numbers for storage and $O(\log n)$ point location time. Kirkpatrick's algorithm uses $O(n\log n)$ preprocessing time, $O(n)$ storage and $O(\log n)$ point location time. The complexity results in Kirkpatrick's algorithm was the previous best result. Although Lipton and Tarjan's algorithm [10] predates Kirkpatrick's algorithm and has the same complexity, Kirkpatrick's algorithm is simpler and has a better structure. This paper can be viewed as a companion paper of paper [3, arXiv:1801.00776].
翻译:我们显示, 美元真实数字可以存储在不变的真实数字数中, 这样每个原始实际数字都可以在 $O (\ log n) 时间中获取 。 虽然我们的结果对许多计算几何问题有影响, 我们在这里显示, 加上韩的$( n\ sqrt\log n}) 时间序列排序算法[, arxiv: 1801.007], 我们可以改进柯克帕特里克的点位置算法的复杂性[ 8] 至 $( sqrt_log n} 美元 。 预处理时间, 存储时间和 $O( log n) 点定位时间的常数。 柯克帕特里克的算法使用 $( n\ log n) 预处理时间、 $O ( n) 美元 储存和 $O( nlog) 点定位时间。 Kirkpatrctr 的算法的复杂性是前最好的结果。 虽然利普顿 和 Tarjan 的算法 [ 10] 在柯克帕特里克 的算算算法 之前, 算算算算算算算得同样复杂, 也相同复杂, 并具有同样复杂, Kirkprictrlick 10. 0 0xxxxx.