Subspace codes are collections of subspaces of a projective space such that any two subspaces satisfy a pairwise minimum distance criterion. Recent results have shown that it is possible to construct optimal $(5,3)$ subspace codes from pairs of partial spreads in the projective space $\mathrm{PG}(4,q)$ over the finite field $ \mathbb{F}_q $, termed doubling codes. We have utilized a complete classification of maximal partial line spreads in $\mathrm{PG}(4,2)$ in literature to establish the types of the spreads in the doubling code instances obtained from two recent constructions of optimum $(5,3)_q$ codes, restricted to $ \mathbb{F}_2 $. Further we present a new characterization of a subclass of binary doubling codes based on the intersection patterns of key subspaces in the pair of constituent spreads.
翻译:子空间代码是投影空间子空间空间子空间的集合, 使任何两个子空间都符合双向最低距离标准。 最近的结果显示, 有可能从投影空间部分差幅的对数 $\ mathrm{PG}( 4, q) $\ mathb{F ⁇ q$, 称为双倍代码上建立最佳的( 5, 3) 子空间代码。 我们利用文献中对最大部分线差的完整分类, 以$\ mathrm{PG}( 4, 2) 来确定从最近两次模拟最佳差幅数的对数中获取的( 5, 3)_ q$, 限为$\ mathbb{F ⁇ 2$ 。 此外, 我们根据组合扩展组合区关键子空间的交叉模式, 对二进码的子分类作了新的定性 。