Intersection joins over interval data are relevant in spatial and temporal data settings. A set of intervals join if their intersection is non-empty. In case of point intervals, the intersection join becomes the standard equality join. We establish the complexity of Boolean conjunctive queries with intersection joins by a many-one equivalence to disjunctions of Boolean conjunctive queries with equality joins. The complexity of any query with intersection joins is that of the hardest query with equality joins in the disjunction exhibited by our equivalence. This is captured by a new width measure called the IJ-width. We also introduce a new syntactic notion of acyclicity called iota-acyclicity to characterise the class of Boolean queries with intersection joins that admit linear time computation modulo a poly-logarithmic factor in the data size. Iota-acyclicity is for intersection joins what alpha-acyclicity is for equality joins. It strictly sits between gamma-acyclicity and Berge-acyclicity. The intersection join queries that are not iota-acyclic are at least as hard as the Boolean triangle query with equality joins, which is widely considered not computable in linear time.


翻译:在空间和时空数据设置中, 间隔数据串联着间隔数据。 如果交叉点不是空的, 一组间隔连在一起。 在点间隔中, 交叉联结会成为标准平等连结。 我们确定布尔连带查询的复杂性, 交叉连带查询以多个一等数的结合, 与布尔连带查询的分离性结合。 交叉连带查询的复杂性是, 最困难的、 平等的查询结合于我们等值所显示的脱钩中。 这是由被称为 IJ- width 的新的宽度测量所捕捉到的。 我们还引入了一种叫做 iota- 环球的新的循环组合概念, 以描述布尔连带查询的类别与交叉连接性结合的特性, 允许线性时间计算一个多对数调系数, 在数据大小中, 相交错是连接的。 Iotota- cy周期性是绝对的, 交叉连接性查询, 与不易变的线性时间, 与双环( ) 并不会被认为是硬的三角 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
6+阅读 · 2019年4月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【LeetCode 500】关关的刷题日记27 Keyboard Row
专知
3+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年8月27日
Embedding Logical Queries on Knowledge Graphs
Arxiv
5+阅读 · 2018年9月6日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
6+阅读 · 2019年4月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【LeetCode 500】关关的刷题日记27 Keyboard Row
专知
3+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员