In this paper, we study the problem of how to learn a model-agnostic meta-learner that simultaneously learning from different feature spaces. The reason that most of model-agnostic meta-learner methods cannot handle multiple task spaces is due to less common knowledge for the task instances. The reduction of shared knowledge is because different tasks with different example-level manifolds cannot entirely share the same model architecture. Actually, various tasks only share partial meta-parameters. For example, for two multi-feature tasks whose example-level manifolds contain a same subspace but their remaining subspaces are not the same, one can imagine that the common knowledge can be the feature extractor for that common subspace, but other subspaces' feature extractors cannot be used between the two tasks.
翻译:在本文中,我们研究了如何学习一个同时从不同特征空间学习的模型-不可知性元解析器的问题。 多数模型-不可知性元解析器方法无法处理多个任务空间的原因是对任务实例的了解较少。 共享知识的减少是因为不同示例级元体的不同任务不能完全共享相同的模型结构。 事实上, 不同任务只共享部分元参数。 例如, 两种多功能任务, 其示例级元体包含相同的子空间, 但其剩余子空间不同, 人们可以想象, 普通知识可能是该共同子空间的特征提取器, 但其它子空间的特征提取器无法在两个任务之间使用 。