High-resolution hyperspectral images (HSIs) contain the response of each pixel in different spectral bands, which can be used to effectively distinguish various objects in complex scenes. While HSI cameras have become low cost, algorithms based on it have not been well exploited. In this paper, we focus on a novel topic, weakly-supervised semantic segmentation in cityscape via HSIs. It is based on the idea that high-resolution HSIs in city scenes contain rich spectral information, which can be easily associated to semantics without manual labeling. Therefore, it enables low cost, highly reliable semantic segmentation in complex scenes. Specifically, in this paper, we theoretically analyze the HSIs and introduce a weakly-supervised HSI semantic segmentation framework, which utilizes spectral information to improve the coarse labels to a finer degree. The experimental results show that our method can obtain highly competitive labels and even have higher edge fineness than artificial fine labels in some classes. At the same time, the results also show that the refined labels can effectively improve the effect of semantic segmentation. The combination of HSIs and semantic segmentation proves that HSIs have great potential in high-level visual tasks.
翻译:高分辨率超光谱图像包含不同光谱带中每个像素的反应,可以用于在复杂场景中有效区分不同对象。 虽然高分辨率超光谱相机成本低, 但基于它的算法没有被很好地利用。 在本文中, 我们侧重于一个新颖的主题, 在城市景色中通过高分辨率高分辨率超光谱图像( 高分辨率超光谱图像) 。 实验结果显示, 在城市景区, 高分辨率高分辨率高分辨率高光谱信息包含丰富的光谱信息, 无需人工标签即可轻易与语义学联系起来。 因此, 它可以在复杂场景中实现低成本、 高度可靠的语义分化。 具体而言, 在本文中, 我们理论上分析HSI, 并引入一个弱度监督的 HSI 语义分解框架, 利用光谱信息将细微的标签提升至较优的程度。 实验结果显示, 我们的方法可以获得高竞争性的标签, 甚至比某些类中人工精细标签更优。 同时, 研究结果还表明, 精细的标签可以有效地改善高廉的复杂场景色标签, 。 具体而言,, 使高分辨率分段任务具有高水平 。