In this paper, we propose the use of geodesic distances in conjunction with multivariate distance matrix regression, called geometric-MDMR, as a powerful first step analysis method for manifold-valued data. Manifold-valued data is appearing more frequently in the literature from analyses of earthquake to analysing brain patterns. Accounting for the structure of this data increases the complexity of your analysis, but allows for much more interpretable results in terms of the data. To test geometric-MDMR, we develop a method to simulate functional connectivity matrices for fMRI data to perform a simulation study, which shows that our method outperforms the current standards in fMRI analysis.
翻译:在本文中,我们提议结合多变距离矩阵回归(称为几何-MDMR)使用大地测量距离与多变距离矩阵回归(称为几何-MDMR)作为多种价值数据的一个强有力的第一步分析方法。在从地震分析到分析大脑模式的文献中,曼化价值数据更加频繁地出现。计算这些数据的结构会增加你分析的复杂性,但从数据的角度可以有更多的解释结果。为了测试几何-MDMR,我们开发了一种模拟功能连接矩阵的方法,用于模拟FMRI数据,以进行模拟研究,该方法表明我们的方法超过了FMRI分析中的现行标准。