We study a variant of the problem of synthesizing Mealy machines that enforce LTL specifications against all possible behaviours of the environment including hostile ones. In the variant studied here, the user provides the high level LTL specification {\phi} of the system to design, and a set E of examples of executions that the solution must produce. Our synthesis algorithm works in two phases. First, it generalizes the decisions taken along the examples E using tailored extensions of automata learning algorithms. This phase generalizes the user-provided examples in E while preserving realizability of {\phi}. Second, the algorithm turns the (usually) incomplete Mealy machine obtained by the learning phase into a complete Mealy machine that realizes {\phi}. The examples are used to guide the synthesis procedure. We provide a completeness result that shows that our procedure can learn any Mealy machine M that realizes {\phi} with a small (polynomial) set of examples. We also show that our problem, that generalizes the classical LTL synthesis problem (i.e. when E = {\emptyset}), matches its worst-case complexity. The additional cost of learning from E is even polynomial in the size of E and in the size of a symbolic representation of solutions that realize {\phi}. This symbolic representation is computed by the synthesis algorithm implemented in Acacia-Bonzai when solving the plain LTL synthesis problem. We illustrate the practical interest of our approach on a set of examples.


翻译:我们研究了合成美利机器问题的一种变体,这些变体是针对所有可能的环境行为,包括敌对环境的行为,执行LTL规格。在此处研究的变体中,用户提供了系统设计所需的高水平LTL规格,以及解决方案必须制作的一组处决实例。我们的合成算法分两个阶段运作。首先,它概括了在实例E中作出的决定,使用了定制的自动学习算法扩展。这个阶段将用户在E中提供的例子笼统化,同时保留了 &phi的可真实性。第二,算法将(通常)学习阶段获得的不完整的Mealy机器转换成一个完整的Mealy机器,用来指导综合程序。我们提供了一个完整的结果,表明我们的程序可以学习任何可实现ypy M的米利机器,用一套小的(球间)实例。我们还展示了我们的问题,将传统的LT合成问题(i)的典型利息概括化了(e.当E=Qial-al 平面的缩图解算法的缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩图的缩图)。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员