To what extent can the patient's length of stay in a hospital be predicted using only an X-ray image? We answer this question by comparing the performance of machine learning survival models on a novel multi-modal dataset created from 1235 images with textual radiology reports annotated by humans. Although black-box models predict better on average than interpretable ones, like Cox proportional hazards, they are not inherently understandable. To overcome this trust issue, we introduce time-dependent model explanations into the human-AI decision making process. Explaining models built on both: human-annotated and algorithm-extracted radiomics features provides valuable insights for physicians working in a hospital. We believe the presented approach to be general and widely applicable to other time-to-event medical use cases. For reproducibility, we open-source code and the TLOS dataset at https://github.com/mi2datalab/xlungs-trustworthy-los-prediction.
翻译:能否仅使用X射线图像预测患者在医院的住院时间有多大程度的可行性?我们通过比较基于人类注释的文本放射学报告和图像创建的新型多模态数据集上机器学习生存模型的性能来回答这个问题。尽管黑匣子模型的预测平均表现要优于可解释模型,如Cox比例风险模型,但它们本质上不具有可理解性。为了解决这个信任问题,我们将时间相关的模型解释引入到人工智能决策过程中。建立在人类注释和算法提取的放射学特征上的模型解释,为在医院工作的医生提供了有价值的见解。我们相信所提出的方法具有普遍适用性,并可应用于其他时间到事件医学用例中。为了可重复性,我们在https://github.com/mi2datalab/xlungs-trustworthy-los-prediction上开源代码和TLOS数据集。