To provide safe and efficient services, robots must rely on observations from sensors (lidar, camera, etc.) to have a clear knowledge of the environment. In multi-agent scenarios, robots must further reason about the intrinsic motivation underlying the behavior of other agents in order to make inferences about their future behavior. Occlusions, which often occur in robot operating scenarios, make the decision-making of robots even more challenging. In scenarios without occlusions, dynamic game theory provides a solid theoretical framework for predicting the behavior of agents with different objectives interacting with each other over time. Prior work proposed an inverse dynamic game method to recover the game model that best explains observed behavior. However, an apparent shortcoming is that it does not account for agents that may be occluded. Neglecting these agents may result in risky navigation decisions. To address this problem, we propose a novel inverse dynamic game technique to infer the behavior of occluded, unobserved agents that best explains the observation of visible agents' behavior, and simultaneously to predict the agents' future behavior based on the recovered game model. We demonstrate our method in several simulated scenarios. Results reveal that our method robustly estimates agents' objectives and predicts trajectories for both visible and occluded agents from a short sequence of noise corrupted trajectory observation of only the visible agents.


翻译:为了提供安全而有效的服务,机器人必须依靠传感器(激光雷达、相机等)的观测来清晰了解环境。在多代理场景中,机器人必须进一步推理其他代理的行为背后的本质动机,以推断他们未来的行为。遮挡在机器人操作场景中经常发生,使机器人的决策变得更具挑战性。在没有遮挡的情况下,动态博弈理论为预测具有不同目标的代理随着时间的推移与其他代理互动的行为提供了坚实的理论框架。以前的工作提出了一种反动态游戏方法,以恢复最能解释观察行为的游戏模型。然而,明显的缺点是它没有考虑可能被遮挡的代理。忽略这些代理可能会导致冒险的导航决策。为了解决这个问题,我们提出了一种新颖的反动态游戏技术,以推断出解释可见代理行为的未被观察到的被遮挡代理的行为,并同时根据恢复的游戏模型预测代理未来的行为。我们在几个模拟场景中演示了我们的方法。结果显示,我们的方法可以从短序列的噪声污染的轨迹观察中稳健地估计代理的目标,并预测可见代理和被遮挡代理的轨迹。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
11+阅读 · 2018年4月25日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员