In today's economy, it becomes important for Internet platforms to consider the sequential information design problem to align its long term interest with incentives of the gig service providers. This paper proposes a novel model of sequential information design, namely the Markov persuasion processes (MPPs), where a sender, with informational advantage, seeks to persuade a stream of myopic receivers to take actions that maximizes the sender's cumulative utilities in a finite horizon Markovian environment with varying prior and utility functions. Planning in MPPs thus faces the unique challenge in finding a signaling policy that is simultaneously persuasive to the myopic receivers and inducing the optimal long-term cumulative utilities of the sender. Nevertheless, in the population level where the model is known, it turns out that we can efficiently determine the optimal (resp. $\epsilon$-optimal) policy with finite (resp. infinite) states and outcomes, through a modified formulation of the Bellman equation. Our main technical contribution is to study the MPP under the online reinforcement learning (RL) setting, where the goal is to learn the optimal signaling policy by interacting with with the underlying MPP, without the knowledge of the sender's utility functions, prior distributions, and the Markov transition kernels. We design a provably efficient no-regret learning algorithm, the Optimism-Pessimism Principle for Persuasion Process (OP4), which features a novel combination of both optimism and pessimism principles. Our algorithm enjoys sample efficiency by achieving a sublinear $\sqrt{T}$-regret upper bound. Furthermore, both our algorithm and theory can be applied to MPPs with large space of outcomes and states via function approximation, and we showcase such a success under the linear setting.
翻译:在当今的经济中,互联网平台必须考虑连续的信息设计问题,使其长期利益与服务提供商的激励机制相一致。本文件提出了一个新的连续信息设计模式,即Markov consulting 进程(MPPs),在这个模式已知的人群中,一个拥有信息优势的发送者试图说服一流的短视接收者采取行动,在一个有限的地平线环境中最大限度地增加发送者的累积公用事业,其先前功能和实用功能各不相同。因此,MPP的规划面临着独特的挑战,即找到一种信号性政策,该信号性政策既能说服短视接收者,又能引导发送者的最佳长期累积功能。然而,在人们知道该模型的人群中,我们可以通过一个智能化的智能化数据流来有效地确定最佳政策($\ eplon- $- 最佳接收者) 状态和结果,通过一个修正的配置方式来研究MPPP(RL) 基础化学习(OL), 目标就是学习最优化的信号政策, 通过与基础的MPPMP(O) 高端平面的运行进行互动互动, 并且通过前的配置输出输出输出流流流流化的输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出,, 的输出输出输出的输出输出输出输出输出输出输出的输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出,,我们的输出输出的输出的输出的输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出输出的流。