We present a family of integral equation-based solvers for the linear or semilinear heat equation in complicated moving (or stationary) geometries. This approach has significant advantages over more standard finite element or finite difference methods in terms of accuracy, stability and space-time adaptivity. In order to be practical, however, a number of technical capabilites are required: fast algorithms for the evaluation of heat potentials, high-order accurate quadratures for singular and weakly integrals over space-time domains, and robust automatic mesh refinement and coarsening capabilities. We describe all of these components and illustrate the performance of the approach with numerical examples in two space dimensions.
翻译:在复杂的移动(或固定)地形中,我们为线性或半线性热等式提出了一套基于等式的完整解决方案,这一方法比更标准的有限要素或精确性、稳定性和时空适应性方面的有限差异方法有很大的优势,但是,为了实用,需要若干技术稳定因素:用于评估热潜能的快速算法、用于单体和单体和弱体的精密二次方程式,以及强大的自动网格改进和粗糙能力。我们用两个空间层面的数字实例描述所有这些要素,并用数字实例说明该方法的绩效。