Precise geolocalization is crucial for unmanned aerial vehicles (UAVs). However, most current deployed UAVs rely on the global navigation satellite systems (GNSS) or high precision inertial navigation systems (INS) for geolocalization. In this paper, we propose to use a lightweight visual-inertial system with a 2D georeference map to obtain accurate and consecutive geodetic positions for UAVs. The proposed system firstly integrates a micro inertial measurement unit (MIMU) and a monocular camera as odometry to consecutively estimate the navigation states and reconstruct the 3D position of the observed visual features in the local world frame. To obtain the geolocation, the visual features tracked by the odometry are further registered to the 2D georeferenced map. While most conventional methods perform image-level aerial image registration, we propose to align the reconstructed points to the map points in the geodetic frame; this helps to filter out the large portion of outliers and decouples the negative effects from the horizontal angles. The registered points are then used to relocalize the vehicle in the geodetic frame. Finally, a pose graph is deployed to fuse the geolocation from the aerial image registration and the local navigation result from the visual-inertial odometry (VIO) to achieve consecutive and drift-free geolocalization performance. We have validated the proposed method by installing the sensors to a UAV body rigidly and have conducted two flights in different environments with unknown initials. The results show that the proposed method can achieve less than 4m position error in flight at 100m high and less than 9m position error in flight about 300m high.
翻译:精确的地理定位对于无人驾驶飞行器(UAVs)至关重要。然而,大多数目前部署的无人驾驶飞行器依靠全球导航卫星系统(GNSS)或高精度惯性导航系统(INS)进行地理定位。在本文件中,我们提议使用带有 2D 地理参照地图的轻量视觉内皮系统,以获得无人驾驶飞行器的准确和连续大地定位。提议的系统首先将微惯性测量单位(MIMU)和单目相机作为观察测量仪,连续地估计导航状态,并重建当地世界框架中已观测到的视觉特征的三维位置。为了获得地理定位,由odorestyat 所跟踪的视觉特征将进一步登记在 2D 地理参照地图的地图上。虽然大多数常规方法都进行图像级空中图像登记,但我们建议将重建的点与测深框架中的地图点相匹配;这有助于过滤大部分的离线测量单位(MIMUMU),并消除横向角度的负面影响。然后,在对当地测地定位框架的定位位置进行重新定位。为了定位定位,在初始定位的位置上,由odhodrophyal测量所测得的视觉测量所测测测得的视觉定位的视觉定位,最后的视觉定位为9的图像的轨道,比我们的轨道的飞行的轨道的轨道的轨道,从地面定位比直径测算得的轨道,从地面的轨道到直径向4。最后的轨道,从地面的轨道的轨道,从地面的轨道,从地面定位到直路路路路路路路路路路路路段段段段段段段距比直路路路路。