This article proposes a visual inertial navigation algorithm intended to diminish the horizontal position drift experienced by autonomous fixed wing UAVs (Unmanned Air Vehicles) in the absence of GNSS (Global Navigation Satellite System) signals. In addition to accelerometers, gyroscopes, and magnetometers, the proposed navigation filter relies on the accurate incremental displacement outputs generated by a VO (Visual Odometry) system, denoted here as a Virtual Vision Sensor or VVS, which relies on images of the Earth surface taken by an onboard camera and is itself assisted by the filter inertial estimations. Although not a full replacement for a GNSS receiver since its position observations are relative instead of absolute, the proposed system enables major reductions in the GNSS-Denied attitude and position estimation errors. In order to minimize the accumulation of errors in the absence of absolute observations, the filter is implemented in the manifold of rigid body rotations or SO (3). Stochastic high fidelity simulations of two representative scenarios involving the loss of GNSS signals are employed to evaluate the results. The authors release the C++ implementation of both the visual inertial navigation filter and the high fidelity simulation as open-source software.
翻译:本条建议采用视觉惯性导航算法,旨在减少无人驾驶的固定翼无人驾驶飞行器(无人驾驶航空飞行器)在没有全球导航卫星系统(全球导航卫星系统)信号的情况下所经历的横向位置漂移;除了加速计、陀螺仪和磁强计之外,拟议的导航过滤器还依赖VO系统(VVO(Visual Odo测量仪))产生的准确增量移位输出,此处以虚拟视野传感器或VVVS表示,它依赖于机上一台相机拍摄的地球表面图像,本身也得到过滤惯性估计的协助;虽然拟议的系统不是完全取代全球导航卫星系统接收器,因为其位置观测是相对的,而不是绝对的,但能够大大降低GNSS-高层态度和位置估计错误;为了在没有绝对观测的情况下尽量减少误差的累积,在僵硬体旋转或SO(3)中安装了过滤器。对两种具有代表性的、涉及GNSS信号损失的情景进行了高精确度的微模拟,用以评价结果。作者宣布GNSS-NS-NLS导航过滤器和高忠实模拟软件的C+++,作为公开的模拟。</s>