High-dimensional signal recovery of standard linear regression is a key challenge in many engineering fields, such as, communications, compressed sensing, and image processing. The approximate message passing (AMP) algorithm proposed by Donoho \textit{et al} is a computational efficient method to such problems, which can attain Bayes-optimal performance in independent identical distributed (IID) sub-Gaussian random matrices region. A significant feature of AMP is that the dynamical behavior of AMP can be fully predicted by a scalar equation termed station evolution (SE). Although AMP is optimal in IID sub-Gaussian random matrices, AMP may fail to converge when measurement matrix is beyond IID sub-Gaussian. To extend the region of random measurement matrix, an expectation propagation (EP)-related algorithm orthogonal AMP (OAMP) was proposed, which shares the same algorithm with EP, expectation consistent (EC), and vector AMP (VAMP). This paper aims at giving a review for those algorithms. We begin with the worst case, i.e. least absolute shrinkage and selection operator (LASSO) inference problem, and then give the detailed derivation of AMP derived from message passing. Also, in the Bayes-optimal setting, we give the Bayes-optimal AMP which has a slight difference from AMP for LASSO. In addition, we review some AMP-related algorithms: OAMP, VAMP, and Memory AMP (MAMP), which can be applied to more general random matrices.


翻译:标准线性回归的高度信号恢复是许多工程领域(如通信、压缩感测和图像处理)面临的一个关键挑战。Donoho \ textit{et al} 提出的大致传递信息(AMP)算法(AMP)算法(AMP)算法(AMP)算法(AMP)算法(AMP)算法(IID) 下Gausian随机区域。AMP的一个重要特征是,AMP的动态性能可以通过称为站级演进(SE)的标度方程式(AMP)充分预测。虽然AMP在IID sub-Gausian随机矩阵中是最佳的,但是当测量矩阵超出IID sub-Gausian时,AMP可能无法趋同。为了扩大随机测量矩阵区域,提出了一种与Bay-OMP(EP)相关的预期传播算法(OMP) 随机矩阵(OMP) 区域, 与EP(EC) 和矢量 AMP(VAMP (VMP MA) 相当的一个特征算法(VMP) 。本文的目的是对这些算法进行最坏的情况进行审查,我们从A 的直译测测测测测算和A 的O (LA- mass- missal- messal- mess) 的O) 也给了A 的O 直译测算法(L) 的O) 的O 上, 的O 的O 的直径(对A 直径(O) 的直径(L) 质) 质) 问题进行更给了A 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
85+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
85+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员